4 research outputs found

    Environmental impact assessment of the pangasius sector in the Mekong Delta

    Get PDF
    In the past seven years the export of white pangasius fillets grew fast. The culture method shifted to intensive production of striped catfish (Ca Tra) in deep ponds because this is more efficient than the pen and cage culture of Ca Basa. Today, striped catfish comprises more than 90 % of the culture. The increased production was achieved by producers investing in large ponds. The market chain is gearing towards vertical integration. Most farms keep fish at relatively high densities of 15 to 25 fish/m3 in ponds having a depth of up to 4m, and are advised to exchange daily 20 to 40% of the water. The sustainability of the sector is threatened due to the increased environmental pressure, and hampered by the growing cost of inputs and reduced farm-gate prices of the fish. The Environmental Impact Assessment (EIA) intends to identify measures for preventing or mitigating the environmental impacts of catfish culture in the Mekong Delta. The EIA was a seven-step process during which we interacted twice with part of the main stakeholders. To build trust among the stakeholders from the sector, we conducted the scoping and goal setting with them

    Trypanosoma brucei brucei causes a rapid and persistent influx of neutrophils in the spleen of infected mice

    Get PDF
    textabstractTrypanosomosis is a chronic parasitic infection, affecting both humans and livestock. A common hallmark of experimental murine infections is the occurrence of inflammation and the associated remodelling of the spleen compartment. The latter involves the depletion of several lymphocyte populations, the induction of T-cell-mediated immune suppression, and the activation of monocyte/macrophage cell populations. Here, we show that in experimental T b brucei infections in mice, these changes are accompanied by the alteration of the spleen neutrophil compartment. Indeed, mature neutrophils are rapidly recruited to the spleen, and cell numbers remain elevated during the entire infection. Following the second peak of parasitemia, the neutrophil cell influx coincides with the rapid reduction of splenic marginal zone (MZ)B and follicular (Fo)B cells, as well as CD8+ T and NK1.1+ cells, the latter encompassing both natural killer (NK) and natural killer T (NKT) cells. This report is the first to show a comprehensive overview of all alterations in spleen cell populations, measured with short intervals throughout the entire course of an experimental T b brucei infection. These data provide new insights into the dynamic interlinked changes in spleen cell numbers associated with trypanosomosis-associated immunopathology
    corecore